Xv6 with picoc & Linkage editor  v1.0
The project delineate mutual cohesion between c library, linkage editor ( linker), interpreter and operating system by porting the same on xv6 kernel
vm.c
00001 #include "param.h"
00002 #include "types.h"
00003 #include "defs.h"
00004 #include "x86.h"
00005 #include "memlayout.h"
00006 #include "mmu.h"
00007 #include "proc.h"
00008 #include "elf.h"
00009 extern char data[];  // defined by kernel.ld
00010 pde_t *kpgdir;  // for use in scheduler()
00011 struct segdesc gdt[NSEGS];
00012 
00013 // Set up CPU's kernel segment descriptors.
00014 // Run once on entry on each CPU.
00015 void
00016 seginit(void)
00017 {
00018   struct cpu *c;
00019 
00020   // Map "logical" addresses to virtual addresses using identity map.
00021   // Cannot share a CODE descriptor for both kernel and user
00022   // because it would have to have DPL_USR, but the CPU forbids
00023   // an interrupt from CPL=0 to DPL=3.
00024   c = &cpus[cpunum()];
00025   c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, 0);
00026   c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
00027   c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, 0, 0xffffffff, DPL_USER);
00028   c->gdt[SEG_UDATA] = SEG(STA_W, 0, 0xffffffff, DPL_USER);
00029 
00030   // Map cpu, and curproc
00031   c->gdt[SEG_KCPU] = SEG(STA_W, &c->cpu, 8, 0);
00032 
00033   lgdt(c->gdt, sizeof(c->gdt));
00034   loadgs(SEG_KCPU << 3);
00035   
00036   // Initialize cpu-local storage.
00037   cpu = c;
00038   proc = 0;
00039 }
00040 
00041 // Return the address of the PTE in page table pgdir
00042 // that corresponds to virtual address va.  If alloc!=0,
00043 // create any required page table pages.
00044 static pte_t *
00045 walkpgdir(pde_t *pgdir, const void *va, int alloc)
00046 {
00047   pde_t *pde;
00048   pte_t *pgtab;
00049 
00050   pde = &pgdir[PDX(va)];
00051   if(*pde & PTE_P){
00052     pgtab = (pte_t*)p2v(PTE_ADDR(*pde));
00053   } else {
00054     if(!alloc || (pgtab = (pte_t*)kalloc()) == 0)
00055       return 0;
00056     // Make sure all those PTE_P bits are zero.
00057     memset(pgtab, 0, PGSIZE);
00058     // The permissions here are overly generous, but they can
00059     // be further restricted by the permissions in the page table 
00060     // entries, if necessary.
00061     *pde = v2p(pgtab) | PTE_P | PTE_W | PTE_U;
00062   }
00063   return &pgtab[PTX(va)];
00064 }
00065 
00066 // Create PTEs for virtual addresses starting at va that refer to
00067 // physical addresses starting at pa. va and size might not
00068 // be page-aligned.
00069 static int
00070 mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm)
00071 {
00072   char *a, *last;
00073   pte_t *pte;
00074   
00075   a = (char*)PGROUNDDOWN((uint)va);
00076   last = (char*)PGROUNDDOWN(((uint)va) + size - 1);
00077   for(;;){
00078     if((pte = walkpgdir(pgdir, a, 1)) == 0)
00079       return -1;
00080     if(*pte & PTE_P)
00081       panic("remap");
00082     *pte = pa | perm | PTE_P;
00083     if(a == last)
00084       break;
00085     a += PGSIZE;
00086     pa += PGSIZE;
00087   }
00088   return 0;
00089 }
00090 
00091 // There is one page table per process, plus one that's used when
00092 // a CPU is not running any process (kpgdir). The kernel uses the
00093 // current process's page table during system calls and interrupts;
00094 // page protection bits prevent user code from using the kernel's
00095 // mappings.
00096 // 
00097 // setupkvm() and exec() set up every page table like this:
00098 //
00099 //   0..KERNBASE: user memory (text+data+stack+heap), mapped to
00100 //                phys memory allocated by the kernel
00101 //   KERNBASE..KERNBASE+EXTMEM: mapped to 0..EXTMEM (for I/O space)
00102 //   KERNBASE+EXTMEM..data: mapped to EXTMEM..V2P(data)
00103 //                for the kernel's instructions and r/o data
00104 //   data..KERNBASE+PHYSTOP: mapped to V2P(data)..PHYSTOP, 
00105 //                                  rw data + free physical memory
00106 //   0xfe000000..0: mapped direct (devices such as ioapic)
00107 //
00108 // The kernel allocates physical memory for its heap and for user memory
00109 // between V2P(end) and the end of physical memory (PHYSTOP)
00110 // (directly addressable from end..P2V(PHYSTOP)).
00111 
00112 // This table defines the kernel's mappings, which are present in
00113 // every process's page table.
00114 static struct kmap {
00115   void *virt;
00116   uint phys_start;
00117   uint phys_end;
00118   int perm;
00119 } kmap[] = {
00120   { (void*) KERNBASE, 0,             EXTMEM,    PTE_W},  // I/O space
00121   { (void*) KERNLINK, V2P(KERNLINK), V2P(data), 0}, // kernel text+rodata
00122   { (void*) data,     V2P(data),     PHYSTOP,   PTE_W},  // kernel data, memory
00123   { (void*) DEVSPACE, DEVSPACE,      0,         PTE_W},  // more devices
00124 };
00125 
00126 // Set up kernel part of a page table.
00127 pde_t*
00128 setupkvm()
00129 {
00130   pde_t *pgdir;
00131   struct kmap *k;
00132 
00133   if((pgdir = (pde_t*)kalloc()) == 0)
00134     return 0;
00135   memset(pgdir, 0, PGSIZE);
00136   if (p2v(PHYSTOP) > (void*)DEVSPACE)
00137     panic("PHYSTOP too high");
00138   for(k = kmap; k < &kmap[NELEM(kmap)]; k++)
00139     if(mappages(pgdir, k->virt, k->phys_end - k->phys_start, 
00140                 (uint)k->phys_start, k->perm) < 0)
00141       return 0;
00142   return pgdir;
00143 }
00144 
00145 // Allocate one page table for the machine for the kernel address
00146 // space for scheduler processes.
00147 void
00148 kvmalloc(void)
00149 {
00150   kpgdir = setupkvm();
00151   switchkvm();
00152 }
00153 
00154 // Switch h/w page table register to the kernel-only page table,
00155 // for when no process is running.
00156 void
00157 switchkvm(void)
00158 {
00159   lcr3(v2p(kpgdir));   // switch to the kernel page table
00160 }
00161 
00162 // Switch TSS and h/w page table to correspond to process p.
00163 void
00164 switchuvm(struct proc *p)
00165 {
00166   pushcli();
00167   cpu->gdt[SEG_TSS] = SEG16(STS_T32A, &cpu->ts, sizeof(cpu->ts)-1, 0);
00168   cpu->gdt[SEG_TSS].s = 0;
00169   cpu->ts.ss0 = SEG_KDATA << 3;
00170   cpu->ts.esp0 = (uint)proc->kstack + KSTACKSIZE;
00171   ltr(SEG_TSS << 3);
00172   if(p->pgdir == 0)
00173     panic("switchuvm: no pgdir");
00174   lcr3(v2p(p->pgdir));  // switch to new address space
00175   popcli();
00176 }
00177 
00178 // Load the initcode into address 0 of pgdir.
00179 // sz must be less than a page.
00180 void
00181 inituvm(pde_t *pgdir, char *init, uint sz)
00182 {
00183   char *mem;
00184   
00185   if(sz >= PGSIZE)
00186     panic("inituvm: more than a page");
00187   mem = kalloc();
00188   memset(mem, 0, PGSIZE);
00189   mappages(pgdir, 0, PGSIZE, v2p(mem), PTE_W|PTE_U);
00190   memmove(mem, init, sz);
00191 }
00192 
00193 // Load a program segment into pgdir.  addr must be page-aligned
00194 // and the pages from addr to addr+sz must already be mapped.
00195 int
00196 loaduvm(pde_t *pgdir, char *addr, struct inode *ip, uint offset, uint sz)
00197 {
00198   uint i, pa, n;
00199   pte_t *pte;
00200 
00201   if((uint) addr % PGSIZE != 0)
00202     panic("loaduvm: addr must be page aligned");
00203   for(i = 0; i < sz; i += PGSIZE){
00204     if((pte = walkpgdir(pgdir, addr+i, 0)) == 0)
00205       panic("loaduvm: address should exist");
00206     pa = PTE_ADDR(*pte);
00207     if(sz - i < PGSIZE)
00208       n = sz - i;
00209     else
00210       n = PGSIZE;
00211     if(readi(ip, p2v(pa), offset+i, n) != n)
00212       return -1;
00213   }
00214   return 0;
00215 }
00216 
00217 // Allocate page tables and physical memory to grow process from oldsz to
00218 // newsz, which need not be page aligned.  Returns new size or 0 on error.
00219 int
00220 allocuvm(pde_t *pgdir, uint oldsz, uint newsz)
00221 {
00222   char *mem;
00223   uint a;
00224 
00225   if(newsz >= KERNBASE)
00226     return 0;
00227   if(newsz < oldsz)
00228     return oldsz;
00229 
00230   a = PGROUNDUP(oldsz);
00231   for(; a < newsz; a += PGSIZE){
00232     mem = kalloc();
00233     if(mem == 0){
00234       cprintf("allocuvm out of memory\n");
00235       deallocuvm(pgdir, newsz, oldsz);
00236       return 0;
00237     }
00238     memset(mem, 0, PGSIZE);
00239     mappages(pgdir, (char*)a, PGSIZE, v2p(mem), PTE_W|PTE_U);
00240   }
00241   return newsz;
00242 }
00243 
00244 
00245 
00246 // Deallocate user pages to bring the process size from oldsz to
00247 // newsz.  oldsz and newsz need not be page-aligned, nor does newsz
00248 // need to be less than oldsz.  oldsz can be larger than the actual
00249 // process size.  Returns the new process size.
00250 int
00251 deallocuvm(pde_t *pgdir, uint oldsz, uint newsz)
00252 {
00253   pte_t *pte;
00254   uint a, pa;
00255 
00256   if(newsz >= oldsz)
00257     return oldsz;
00258 
00259   a = PGROUNDUP(newsz);
00260   for(; a  < oldsz; a += PGSIZE){
00261     pte = walkpgdir(pgdir, (char*)a, 0);
00262     if(!pte)
00263       a += (NPTENTRIES - 1) * PGSIZE;
00264     else if((*pte & PTE_P) != 0){
00265       pa = PTE_ADDR(*pte);
00266       if(pa == 0)
00267         panic("kfree");
00268       char *v = p2v(pa);
00269       kfree(v);
00270       *pte = 0;
00271     }
00272   }
00273   return newsz;
00274 }
00275 
00276 // Free a page table and all the physical memory pages
00277 // in the user part.
00278 void
00279 freevm(pde_t *pgdir)
00280 {
00281   uint i;
00282 
00283   if(pgdir == 0)
00284     panic("freevm: no pgdir");
00285   deallocuvm(pgdir, KERNBASE, 0);
00286   for(i = 0; i < NPDENTRIES; i++){
00287     if(pgdir[i] & PTE_P){
00288       char * v = p2v(PTE_ADDR(pgdir[i]));
00289       kfree(v);
00290     }
00291   }
00292   kfree((char*)pgdir);
00293 }
00294 
00295 // Clear PTE_U on a page. Used to create an inaccessible
00296 // page beneath the user stack.
00297 void
00298 clearpteu(pde_t *pgdir, char *uva)
00299 {
00300   pte_t *pte;
00301 
00302   pte = walkpgdir(pgdir, uva, 0);
00303   if(pte == 0)
00304     panic("clearpteu");
00305   *pte &= ~PTE_U;
00306 }
00307 
00308 // Given a parent process's page table, create a copy
00309 // of it for a child.
00310 pde_t*
00311 copyuvm(pde_t *pgdir, uint sz)
00312 {
00313   pde_t *d;
00314   pte_t *pte;
00315   uint pa, i;
00316   char *mem;
00317 
00318   if((d = setupkvm()) == 0)
00319     return 0;
00320   for(i = 0; i < sz; i += PGSIZE){
00321     if((pte = walkpgdir(pgdir, (void *) i, 0)) == 0)
00322       panic("copyuvm: pte should exist");
00323     if(!(*pte & PTE_P))
00324       panic("copyuvm: page not present");
00325     pa = PTE_ADDR(*pte);
00326     if((mem = kalloc()) == 0)
00327       goto bad;
00328     memmove(mem, (char*)p2v(pa), PGSIZE);
00329     if(mappages(d, (void*)i, PGSIZE, v2p(mem), PTE_W|PTE_U) < 0)
00330       goto bad;
00331   }
00332   return d;
00333 
00334 bad:
00335   freevm(d);
00336   return 0;
00337 }
00338 
00339 //PAGEBREAK!
00340 // Map user virtual address to kernel address.
00341 char*
00342 uva2ka(pde_t *pgdir, char *uva)
00343 {
00344   pte_t *pte;
00345 
00346   pte = walkpgdir(pgdir, uva, 0);
00347   if((*pte & PTE_P) == 0)
00348     return 0;
00349   if((*pte & PTE_U) == 0)
00350     return 0;
00351   return (char*)p2v(PTE_ADDR(*pte));
00352 }
00353 
00354 // Copy len bytes from p to user address va in page table pgdir.
00355 // Most useful when pgdir is not the current page table.
00356 // uva2ka ensures this only works for PTE_U pages.
00357 int
00358 copyout(pde_t *pgdir, uint va, void *p, uint len)
00359 {
00360   char *buf, *pa0;
00361   uint n, va0;
00362 
00363   buf = (char*)p;
00364   while(len > 0){
00365     va0 = (uint)PGROUNDDOWN(va);
00366     pa0 = uva2ka(pgdir, (char*)va0);
00367     if(pa0 == 0)
00368       return -1;
00369     n = PGSIZE - (va - va0);
00370     if(n > len)
00371       n = len;
00372     memmove(pa0 + (va - va0), buf, n);
00373     len -= n;
00374     buf += n;
00375     va = va0 + PGSIZE;
00376   }
00377   return 0;
00378 }
 All Data Structures